TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY

Wolfson Department of Chemical Engineering Seminar

Monday, November 10rd, 2025 at 13:30

Room 6

Nanofiltration in phosphoric acid industry: Purification and acid recovery

Einat Shooster

MSc Seminar

Advisor: Prof. Viatcheslav Freger and Prof. Raphael Semiat Department of Chemical Engineering, Technion-Israel Institute for Technology

Phosphoric acid (H₃PO₄) is a key chemical in fertilizer, food, and battery industries, with growing demand for high-purity acid for lithium iron phosphate (LFP) cathode production. However, wet-process phosphoric acid (WPA), which dominates global production, contains high levels of impurities such as Fe³⁺, Al³⁺, Ca²⁺, and F⁻, restricting its use in high-value applications. Conventional purification methods like solvent extraction are costly and environmentally challenging. This study investigates nanofiltration (NF) as a sustainable and scalable alternative for phosphoric acid purification and recovery. Five commercial acid-resistant membranes were evaluated using a SEPA CF crossflow system with WPA and solvent-extracted acid feeds at varying P₂O₅ concentrations (20– 40%) and pressures (30–60 bar). Performance was assessed in terms of flux, impurity rejection, and membrane stability under highly acidic conditions. Among the tested membranes, A-3014 showed the best balance between permeability and selectivity, achieving >96% rejection of Fe³⁺ and Al³⁺ with stable flux. Increasing acid concentration caused a sharp flux decline due to higher viscosity and osmotic pressure, while Ca²⁺ rejection remained lower because of its smaller hydrated radius and charge density. The results confirm that nanofiltration provides an efficient, modular, and environmentally friendly route for producing food- and battery-grade phosphoric acid, supporting future implementation of membrane-based or hybrid NF–SX systems in the phosphoric acid industry.