הטכניון - מכון טכנולוגי לישראל

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY

הפקולטה להנדסה כימית עייש וולפסון The Wolfson Department of Chemical Engineering

Wolfson Department of Chemical Engineering Seminar

Monday, Januray 29th, 2024 at 13:30

Zoom: https://technion.zoom.us/j/95946398059

PIM-1-based Membranes Mediated with CO₂-philic MXene Nanosheets for Superior CO₂/N₂ Separation

Kaifang Wang

PhD Mid-Seminar

Advisor: Prof. Raphael Semiat Prof. Xuezhong He Department of Chemical Engineering, Technion-Israel Institute for Technology Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology

Abstract: Membrane gas separation technologies have emerged as highly prospective avenues for the selective separation of CO₂. In this research, a novel array of mixed matrix membranes (MMMs) was engineered, integrating two-dimensional nanosheets of MXene, specifically $Ti_3C_2T_x$, into polymers of intrinsic microporosity (PIMs) to selectively separate CO₂ from N₂. The inclusion of $Ti_3C_2T_x$ nanosheets, rich in polar functional groups, significantly increases the affinity between CO₂ molecules and the fabricated MMMs. Additionally, the precise modulation of the molecular diffusion channels for CO₂ and N₂ is achievable due to the interlayer spacing between MXene layers (~0.35nm) within the PIM-1 matrix. This innovation is predicated on the synergistic effect of solution-diffusion and molecular sieving mechanisms that underpin the gas separation process, leading to a marked improvement in both selectivity for CO₂ over N₂ and the permeability of CO₂. Among the series, the MMM with a 0.5 wt% MXene displayed exceptional separation efficiency, achieving a CO₂ permeability of 12475.3 Barrer and a CO₂/N₂ selectivity of 32.7. Notably, each PIM-1/MXene membrane composition examined in this study exceeded the Robeson upper bound set in 2019, indicating their substantial promise for CO₂ separation and capture in industrial applications.